direct product, abelian, monomial
Aliases: C62, SmallGroup(36,14)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C62 |
C1 — C62 |
C1 — C62 |
Generators and relations for C62
G = < a,b | a6=b6=1, ab=ba >
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)
(1 18 12 31 26 23)(2 13 7 32 27 24)(3 14 8 33 28 19)(4 15 9 34 29 20)(5 16 10 35 30 21)(6 17 11 36 25 22)
G:=sub<Sym(36)| (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36), (1,18,12,31,26,23)(2,13,7,32,27,24)(3,14,8,33,28,19)(4,15,9,34,29,20)(5,16,10,35,30,21)(6,17,11,36,25,22)>;
G:=Group( (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36), (1,18,12,31,26,23)(2,13,7,32,27,24)(3,14,8,33,28,19)(4,15,9,34,29,20)(5,16,10,35,30,21)(6,17,11,36,25,22) );
G=PermutationGroup([[(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36)], [(1,18,12,31,26,23),(2,13,7,32,27,24),(3,14,8,33,28,19),(4,15,9,34,29,20),(5,16,10,35,30,21),(6,17,11,36,25,22)]])
C62 is a maximal subgroup of
C32⋊7D4 C32.A4 C32⋊A4
36 conjugacy classes
class | 1 | 2A | 2B | 2C | 3A | ··· | 3H | 6A | ··· | 6X |
order | 1 | 2 | 2 | 2 | 3 | ··· | 3 | 6 | ··· | 6 |
size | 1 | 1 | 1 | 1 | 1 | ··· | 1 | 1 | ··· | 1 |
36 irreducible representations
dim | 1 | 1 | 1 | 1 |
type | + | + | ||
image | C1 | C2 | C3 | C6 |
kernel | C62 | C3×C6 | C2×C6 | C6 |
# reps | 1 | 3 | 8 | 24 |
Matrix representation of C62 ►in GL2(𝔽7) generated by
5 | 0 |
0 | 1 |
6 | 0 |
0 | 3 |
G:=sub<GL(2,GF(7))| [5,0,0,1],[6,0,0,3] >;
C62 in GAP, Magma, Sage, TeX
C_6^2
% in TeX
G:=Group("C6^2");
// GroupNames label
G:=SmallGroup(36,14);
// by ID
G=gap.SmallGroup(36,14);
# by ID
G:=PCGroup([4,-2,-2,-3,-3]);
// Polycyclic
G:=Group<a,b|a^6=b^6=1,a*b=b*a>;
// generators/relations
Export